Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 198: 106497, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38631226

RESUMO

Discharge of gas-rich brines fuels productive chemosynthetic ecosystems in the deep sea. In these salty, methanic and sulfidic brines, microbial communities adapt to specific niches along the physicochemical gradients. However, the molecular mechanisms that underpin these adaptations are not fully known. Using metagenomics, we investigated the dense (∼106 cell ml-1) microbial communities that occupy small deep-sea brine pools found in the Southeastern Mediterranean Sea (1150 m water depth, ∼22 °C, ∼60 PSU salinity, sulfide, methane, ammonia reaching millimolar levels, and oxygen usually depleted), reaching high productivity rates of 685 µg C L-1 d-1 ex-situ. We curated 266 metagenome-assembled genomes of bacteria and archaea from the several pools and adjacent sediment-water interface, highlighting the dominance of a single Sulfurimonas, which likely fuels its autotrophy using sulfide oxidation or inorganic sulfur disproportionation. This lineage may be dominant in its niche due to genome streamlining, limiting its metabolic repertoire, particularly by using a single variant of sulfide: quinone oxidoreductase. These primary producers co-exist with ANME-2c archaea that catalyze the anaerobic oxidation of methane. Other lineages can degrade the necromass aerobically (Halomonas and Alcanivorax), or anaerobically through fermentation of macromolecules (e.g., Caldatribacteriota, Bipolaricaulia, Chloroflexota, etc). These low-abundance organisms likely support the autotrophs, providing energy-rich H2, and vital organics such as vitamin B12.

2.
Environ Int ; 187: 108661, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38688233

RESUMO

Deep-sea habitats are currently recognized as a hot spot for mercury (Hg) accumulation from anthropogenic sources, resulting in elevated concentrations of total mercury (THg) in deep-sea megafauna. Among them, deep-sea sharks (Class Chondrichthyes) are characterized by high trophic position and extended longevity and are, therefore, at high risk for mercury contamination. Despite this, sharks are overexploited by fishing activity in increasingly deeper water, worldwide, imposing health risks to human consumption. While it is imperative to better understand long-term mercury contamination in deep-sea megafauna, few historical data sets exist to capture this process. Here we explore four decades (1985-2022) of THg accumulation in five species of deep-sea sharks (G. melastomus, E. spinax, S. rostratus, C. granulosus, and D. licha) of the ultra-oligotrophic Southeastern Mediterranean Sea (SEMS) sampled during 19 research cruises. We exhibited exceptionally high THg levels (per length/weight), the highest as 16.6 µg g-1 (wet wt.), almost entirely (98.9 %; n = 298 specimens) exceeding the limit for safe consumption (0.3-0.5 µg THg g-1 wet wt.). The maximal THg levels of the long-lived species D. licha and C. granulosus in the SEMS were enriched by a factor of âˆ¼ 7 and >10 compared to counterpart species from other oceanic areas, respectively. We attribute this to the ultra-oligotrophic conditions of the SEMS, which cause slower growth rates and dwarfism in deep-sea sharks, resulting in an extended exposure time to mercury contamination. In the long-lived species, C. granulosus and D. licha, a temporal increase of average THg levels of âˆ¼ 80 % was recorded between 1987-1999 and 2021-2022. This likely reflects the long-term accumulation of historical anthropogenic Hg in deep-sea environments, which is further amplified in marginal seas such as the Mediterranean, impacted by global air pollution crossroads and surrounded by land-based pollution sources. Future consumption of products from deep-sea sharks is potentially high risk to human health.

3.
Environ Sci Technol ; 58(13): 5631-5645, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38516811

RESUMO

Seawater reverse osmosis (SWRO) desalination facilities produce freshwater and, at the same time, discharge hypersaline brine that often includes various chemical additives such as antiscalants and coagulants. This dense brine can sink to the sea bottom and creep over the seabed, reaching up to 5 km from the discharge point. Previous reviews have discussed the effects of SWRO desalination brine on various marine ecosystems, yet little attention has been paid to the impacts on benthic habitats. This review comprehensibly discusses the effects of SWRO brine discharge on marine benthic fauna and flora. We review previous studies that indicated a suite of impacts by SWRO brine on benthic organisms, including bacteria, seagrasses, polychaetes, and corals. The effects within the discharge mixing zones range from impaired activities and morphological deformations to changes in the community composition. Recent modeling work demonstrated that brine could spread over the seabed, beyond the mixing zone, for up to several tens of kilometers and impair nutrient fluxes from the sediment to the water column. We also provide a possible perspective on brine's impact on the biogeochemical process within the mixing zone subsurface. Desalination brine can infiltrate into the sandy bottom around the discharge area due to gravity currents. Accumulation of brine and associated chemical additives, such as polyphosphonate-based antiscalants and ferric-based coagulants in the porewater, may change the redox zones and, hence, impact biogeochemical processes in sediments. With the demand for drinking water escalating worldwide, the volumes of brine discharge are predicted to triple during the current century. Future efforts should focus on the development and operation of viable technologies to minimize the volumes of brine discharged into marine environments, along with a change to environmentally friendly additives. However, the application of these technologies should be partly subsidized by governmental stakeholders to safeguard coastal ecosystems around desalination facilities.


Assuntos
Ecossistema , Sais , Purificação da Água , Salinidade , Água do Mar/química
4.
Sci Total Environ ; 921: 171274, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38408663

RESUMO

Silica plays a key role in the growth of silicifying primary producers (e.g., diatoms) and hence the ocean carbon pump. The Mediterranean Sea's eastern Levantine Basin (ELB) is a low silica (and low N and P) ultra-oligotrophic basin. Before 1965, Nile autumn floods were a major source of dissolved silica (DSi) and other nutrients to primary producers of the ELB continental shelf, also known as the Nilotic cell. The construction of the Aswan High Dam (AHD) in the mid-1960s, blocked these floods, drastically diminishing the autumn-diatom blooms offshore the Nile delta. However, the far-reaching and long-lasting effects of the Nile damming on the Si cycle in the ELB remain unclear. Here, we studied the changes in DSi in the surface water offshore Israel and the distribution of biogenic silica in deep-sea short sediment cores, collected hundreds of kilometers from the Nile outlet, at depths range of 1100-1900 m, offshore the ELB Israeli coast. We show post dam reduction and termination in flood related seasonality of DSi and a concurrent decrease (of up to 79 %) in biogenic silica (BSi) accumulation rates in surficial sediments relative to underlying sediments. These changes reflect the effects of Si (dissolved and particulate) retention by the AHD on diatoms production, export and burial in the ELB. This far-field effect was demonstrated in deep-sea areas subjected to intense lateral transport of resuspended sediments from the shelf via intermediate nepheloid layers and to coastal water intrusions, along the path of the pre-dam, flood plumes. Our core records show that the AHD worsened nutrient-diminished, exceptionally unfavorable conditions for diatoms that persisted in the deep ELB at least during the last four millennia.

5.
Chemosphere ; 351: 141201, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246502

RESUMO

This study explores the accumulation of total mercury (THg) in deep-sea sediments and demersal megafauna of the ultra-oligotrophic Southeastern Mediterranean Sea (SEMS) across bathymetric gradients in the range 35-1900 m, sampled in seven cruises during 2013, 2017-2021, and 2023. Measurements of THg were conducted in surficial (0.0-0.5 cm) and subsurface (9.0-10 cm) sediments, demersal sharks, demersal teleost fish, and benthic crustaceans. Sedimentary organic carbon and biota δ13C and δ15N values were determined to explore possible foraging habitats and dietary sources of THg. The results exhibit an increasing trend of THg in surficial sediments with increasing bottom depth, while in the subsurface, pre-industrial sediments, THg remains lower, slightly increasing with depth. Having no major terrestrial point sources in this area, this increasing trend of THg in surficial sediments across bathymetric gradients is controlled by atmospheric mercury deposition, scavenged by the biological pump, and by lateral transport of particulate Hg in winnowed fine particles from the shelf. Similarly, the THg in benthic crustaceans and demersal fish ranged between 0.02 and 2.71 µg g-1 wet weight (0.06 and 10.8 µg g-1 dry weight) and increased with muscle δ13C as a function of distance offshore, while presenting a low THg-δ15N bio-magnification power. Our results suggest that foraging habitats, longevity, and species-specific depth distribution control their muscle THg bioaccumulation. Despite this complexity, the pooling of THg in megafauna into specific deep zones reflected the trend of increasing anthropogenic THg across bathymetric gradients. Furthermore, many of the biota measurements exceeded safe consumption thresholds for Hg and therefore, should be considered carefully in the development and regulation of deep-sea trawling in this region.


Assuntos
Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Mar Mediterrâneo , Ecossistema , Biota , Músculos/química , Peixes , Crustáceos , Poluentes Químicos da Água/análise , Monitoramento Ambiental
7.
Nat Ecol Evol ; 6(12): 2016-2028, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36376603

RESUMO

Although cooking is regarded as a key element in the evolutionary success of the genus Homo, impacting various biological and social aspects, when intentional cooking first began remains unknown. The early Middle Pleistocene site of Gesher Benot Ya'aqov, Israel (marine isotope stages 18-20; ~0.78 million years ago), has preserved evidence of hearth-related hominin activities and large numbers of freshwater fish remains (>40,000). A taphonomic study and isotopic analyses revealed significant differences between the characteristics of the fish bone assemblages recovered in eight sequential archaeological horizons of Area B (Layer II-6 levels 1-7) and natural fish bone assemblages (identified in Area A). Gesher Benot Ya'aqov archaeological horizons II-6 L1-7 exhibited low fish species richness, with a clear preference for two species of large Cyprinidae (Luciobarbus longiceps and Carasobarbus canis) and the almost total absence of fish bones in contrast to the richness of pharyngeal teeth (>95%). Most of the pharyngeal teeth recovered in archaeological horizons II-6 L1-7 were spatially associated with 'phantom' hearths (clusters of burnt flint microartifacts). Size-strain analysis using X-ray powder diffraction provided evidence that these teeth had been exposed to low temperature (<500 °C), suggesting, together with the archaeological and taphonomic data, that the fish from the archaeological horizons of Area B had been cooked and consumed on site. This is the earliest evidence of cooking by hominins.


Assuntos
Hominidae , Animais , Israel , Arqueologia , Peixes , Culinária
8.
Sci Rep ; 12(1): 15970, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153366

RESUMO

The oceans play a major role in the earth's climate by regulating atmospheric CO2. While oceanic primary productivity and organic carbon burial sequesters CO2 from the atmosphere, precipitation of CaCO3 in the sea returns CO2 to the atmosphere. Abiotic CaCO3 precipitation in the form of aragonite is potentially an important feedback mechanism for the global carbon cycle, but this process has not been fully quantified. In a sediment-trap study conducted in the southeastern Mediterranean Sea, one of the fastest warming and most oligotrophic regions in the ocean, we quantify for the first time the flux of inorganic aragonite in the water column. We show that this process is kinetically induced by the warming of surface water and prolonged stratification resulting in a high aragonite saturation state (ΩAr ≥ 4). Based on these relations, we estimate that abiotic aragonite calcification may account for 15 ± 3% of the previously reported CO2 efflux from the sea surface to the atmosphere in the southeastern Mediterranean. Modelled predictions of sea surface temperature and ΩAr suggest that this process may weaken in the future ocean, resulting in increased alkalinity and buffering capacity of atmospheric CO2.


Assuntos
Dióxido de Carbono , Água do Mar , Atmosfera , Carbonato de Cálcio/análise , Carbono/análise , Dióxido de Carbono/análise , Mar Mediterrâneo , Oceanos e Mares , Água
9.
Environ Sci Technol ; 56(18): 13142-13151, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36044758

RESUMO

Desalination brine is a hypersaline byproduct that contains various operational chemicals such as polyphosphonate-based antiscalants. Brine often sinks and flows over the seabed by density currents; therefore, it may affect sediment-water nutrient fluxes and thus microbial activity. We quantified these parameters in brine plumes around two large-scale desalination facilities located in the P-limited Southeastern Mediterranean Sea. The benthic nutrient fluxes and microbial activity were determined using ex-situ core benthocosms, to which we added brine from the dispersion area in excess salinities of ∼3% and 5% above natural levels. A higher influx of dissolved organic phosphorus (∼6-fold) and an efflux of dissolved organic carbon (∼1.7-fold) were measured in the brine-amended cores relative to the controls. This was accompanied by increased oxygen consumption (15%) and increased microbial activity (∼1.5-6.5-fold). Field observations support the results from experimental manipulations, yielding ∼4.5-fold higher microbial activity rates around the brine plume compared to uninfluenced locations. Our results imply that desalination brine can alter sedimentary processes affecting benthic nutrients inventories. Moreover, we show that brine acts as a vector of anthropogenic P, stimulating microbial activity in the sediment-water interface.


Assuntos
Água do Mar , Água , Nutrientes , Compostos Organofosforados , Sais
10.
Nat Commun ; 13(1): 2980, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641494

RESUMO

Diet is a crucial trait of an animal's lifestyle and ecology. The trophic level of an organism indicates its functional position within an ecosystem and holds significance for its ecology and evolution. Here, we demonstrate the use of zinc isotopes (δ66Zn) to geochemically assess the trophic level in diverse extant and extinct sharks, including the Neogene megatooth shark (Otodus megalodon) and the great white shark (Carcharodon carcharias). We reveal that dietary δ66Zn signatures are preserved in fossil shark tooth enameloid over deep geologic time and are robust recorders of each species' trophic level. We observe significant δ66Zn differences among the Otodus and Carcharodon populations implying dietary shifts throughout the Neogene in both genera. Notably, Early Pliocene sympatric C. carcharias and O. megalodon appear to have occupied a similar mean trophic level, a finding that may hold clues to the extinction of the gigantic Neogene megatooth shark.


Assuntos
Ecossistema , Tubarões , Animais , Ecologia , Estado Nutricional , Isótopos de Zinco
11.
Water Res ; 215: 118231, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35247603

RESUMO

Circumstantial evidence has suggested that jellyfish swarms impair the operation of seawater reverse osmosis desalination facilities. However, only limited information is currently available on the pretreatment efficiency of jellyfish and their effects on reverse osmosis (RO) membrane performance. Here, we have comprehensively tested the pretreatment efficiency of a dual-media gravity filter and cartridge micro-filtration following the addition of jellyfish into the feedwater. Concurrently, the fouling propensity and performance of the RO membranes were examined. We show that jellyfish demise resulted in seawater eutrophication that triggered a significant increase in bacterial biomass (∼50-fold), activity (∼7-fold), and release of transparent exopolymer particles (∼5-fold), peaking three days after the addition of jellyfish into the feedwater. In parallel, a significant reduction in permeate water flux was recorded (∼10%) while trans-membrane pressure sharply increased (15%), reaching the operation pressure limit of our system (75 bar) after five days. At the conclusion of the experiments, the membrane surface was heavily covered by large chunks of organic-rich material and multilayered biofilms. Our results provide a holistic view on the operational challenges of seawater reverse osmosis (SWRO) desalination triggered by jellyfish swarms in coastal areas. Following the above, it can be inferred that freshwater production will likely be halted three days after drawing the jellyfish into the pretreatment system. Outcomes from these results may lead to the development of science-based operational protocols to cope with growing occurrence of jellyfish swarms around the intake of SWRO desalination facilities worldwide.


Assuntos
Purificação da Água , Filtração , Membranas Artificiais , Osmose , Água do Mar , Purificação da Água/métodos
12.
FEMS Microbiol Ecol ; 98(2)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35137052

RESUMO

Benthic microbes are key organisms in the oligotrophic Southeastern Mediterranean Sea (SEMS), yet their abundance, activity, and diversity in this rapidly changing basin are not fully understood. We investigated the prokaryotic and microfungal communities throughout years 2018-2020 at 27 stations (6-1900 m water depths, down to 20 cm below the sediment surface), in two transects with distinct downslope transport regimes, and along the eutrophic coastline. We estimated microbial abundance with flow cytometry, secondary production as leucine assimilation, and sequenced marker genes (the 16S rRNA and internal transcribed spacer) to assess diversity indices. The highest abundance (0.21 × 108 cells gr-1 sediment) was estimated at slope stations where we assumed substantial transport rates and found an accumulation of organic carbon. Secondary production was the highest nearshore (12 ± 4 ng C gr-1 h-1), and markedly declined offshore (0.5 ± 0.9 ng C gr-1 h-1). Populations of archaea (dominant Nitrososphaeria and Nanoarchaeia) and diverse bacteria were stable over three years, and taxonomic composition was dictated mainly by depth gradients. Saprotrophic and pathotrophic microfungi Ascomycota (70% ± 23%) and Basidiomycota (16% ± 18%) were prevalent, whereas parasitic chytrids were abundant nearshore. Our results highlight the role of downslope transport, which enriched the typical deep-sea communities with anaerobic lineages, in shaping microbial populations near the continental slope.


Assuntos
Archaea , Bactérias , Archaea/genética , Bactérias/genética , Sedimentos Geológicos/microbiologia , Mar Mediterrâneo , RNA Ribossômico 16S/genética
13.
PeerJ ; 8: e9355, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612887

RESUMO

Climate, which sets broad limits for migrating species, is considered a key filter to species migration between contrasting marine environments. The Southeast Mediterranean Sea (SEMS) is one of the regions where ocean temperatures are rising the fastest under recent climate change. Also, it is the most vulnerable marine region to species introductions. Here, we explore the factors which enabled the colonization of the endemic Red Sea octocoral Melithaea erythraea (Ehrenberg, 1834) along the SEMS coast, using sclerite oxygen and carbon stable isotope composition (δ 18OSC and δ 13CSC), morphology, and crystallography. The unique conditions presented by the SEMS include a greater temperature range (∼15 °C) and ultra-oligotrophy, and these are reflected by the lower δ 13CSCvalues. This is indicative of a larger metabolic carbon intake during calcification, as well as an increase in crystal size, a decrease of octocoral wart density and thickness of the migrating octocoral sclerites compared to the Red Sea samples. This suggests increased stress conditions, affecting sclerite deposition of the SEMS migrating octocoral. The δ 18Osc range of the migrating M. erythraea indicates a preference for warm water sclerite deposition, similar to the native depositional temperature range of 21-28 °C. These findings are associated with the observed increase of minimum temperatures in winter for this region, at a rate of 0.35 ± 0.27 °C decade-1 over the last 30 years, and thus the region is becoming more hospitable to the Indo-Pacific M. erythraea. This study shows a clear case study of "tropicalization" of the Mediterranean Sea due to recent warming.

14.
Front Microbiol ; 10: 1913, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31474972

RESUMO

Phytoplankton and heterotrophic bacteria rely on a suite of inorganic and organic macronutrients to satisfy their cellular needs. Here, we explored the effect of dissolved inorganic phosphate (PO4) and several dissolved organic molecules containing phosphorus [ATP, glucose-6-phosphate, 2-aminoethylphosphonic acid, collectively referred to as dissolved organic phosphorus (DOP)], on the activity and biomass of autotrophic and heterotrophic microbial populations in the coastal water of the southeastern Mediterranean Sea (SEMS) during summertime. To this end, surface waters were supplemented with PO4, one of the different organic molecules, or PO4 + ATP, and measured the PO4 turnover time (Tt), alkaline phosphatase activity (APA), heterotrophic bacterial production (BP), primary production (PP), and the abundance of the different microbial components. Our results show that PO4 alone does not stimulate any significant change in most of the autotrophic or heterotrophic bacterial variables tested. ATP addition (alone or with PO4) triggers the strongest increase in primary and bacterial productivity or biomass. Heterotrophic bacterial abundance and BP respond faster than phytoplankton (24 h post addition) to the various additions of DOP or PO4 + ATP, followed by a recovery of primary productivity (48 h post addition). These observations suggest that both autotrophic and heterotrophic microbial communities compete for labile organic molecules containing P, such as ATP, to satisfy their cellular needs. It also suggests that SEMS coastal water heterotrophic bacteria are likely C and P co-limited.

15.
PLoS One ; 14(7): e0220390, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31365545

RESUMO

Here we explore the carbon and oxygen isotope compositions of the co-existing carbonate and phosphate fractions of fish tooth enameloid as a tool to reconstruct past aquatic fish environments and harvesting grounds. The enameloid oxygen isotope compositions of the phosphate fraction (δ18OPO4) vary by as much as ~4‰ for migratory marine fish such as gilthead seabream (Sparus aurata), predominantly reflecting the different saline habitats it occupies during its life cycle. The offset in enameloid Δ18OCO3-PO4 values of modern marine Sparidae and freshwater Cyprinidae from the Southeast Mediterranean region vary between 8.1 and 11.0‰, similar to values reported for modern sharks. The mean δ13C of modern adult S. aurata and Cyprinus carpio teeth of 0.1±0.4‰ and -6.1±0.7‰, respectively, mainly reflect the difference in δ13C of dissolved inorganic carbon (DIC) of the ambient water and dietary carbon sources. The enameloid Δ18OCO3-PO4 and δ13C values of ancient S. aurata (Holocene) and fossil Luciobarbus sp. (Cyprinidae; mid Pleistocene) teeth agree well with those of modern specimens, implying little diagenetic alteration of these tooth samples. Paired δ18OPO4-δ13C data from ancient S. aurata teeth indicate that hypersaline water bodies formed in the Levant region during the Late Holocene from typical Mediterranean coastal water with high evaporation rates and limited carbon input from terrestrial sources. Sparid tooth stable isotopes further suggest that coastal lagoons in the Eastern Mediterranean had already formed by the Early Holocene and were influenced by terrestrial carbon sources. Overall, combined enameloid oxygen and carbon isotope analysis of fish teeth is a powerful tool to infer the hydrologic evolution of aquatic environments and assess past fishing grounds of human populations in antiquity.


Assuntos
Carbonatos/química , Fósseis , Fosfatos/química , Dente/química , Animais , Evolução Biológica , Carbono/análise , Carbono/metabolismo , Isótopos de Carbono/análise , Carpas/metabolismo , Ecossistema , Região do Mediterrâneo , Oxigênio/análise , Oxigênio/metabolismo , Isótopos de Oxigênio/análise , Dourada/metabolismo , Tubarões/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA